Interpreting the features for domain experts Using WIDE learning
ثبت نشده
چکیده
In this paper, authors have proposed an interpretable feature recommendation method for solving sensor signal analytics problem machine maintenance domain. The basic Wide learning based architecture for feature recommendation is out of the scope of discussion in this paper and authors have emphasized on the interpretation of the recommended features and how this human in loop interpretation system can can be used as a prescriptive system. The proposed system was deployed in solving a regression problem for one internal data set of machine maintenance record, as well as a prescriptive system on the popular bearing data-set from NASA prognostic repository. The proposed system is also used to analyze the casuality of a machine maintenance problem.
منابع مشابه
Interpreting the Validity of a High-Stakes Test in Light of the Argument-Based Framework: Implications for Test Improvement
The validity of large-scale assessments may be compromised, partly due to their content inappropriateness or construct underrepresentation. Few validity studies have focused on such assessments within an argument-based framework. This study analyzed the domain description and evaluation inference of the Ph.D. Entrance Exam of ELT (PEEE) sat by Ph.D. examinees (n = 999) in 2014 in Iran....
متن کاملA Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملTASK-BASED CURRICULUM FROM THE NURSING EDUCATION EXPERTS' VIEWPOINT: A PHENOMENOLOGICAL STUDY
Background & Aims: One of the new educational approaches adopted by many medical schools around the world as a suitable method for teaching and learning is the task-based curriculum developed by Harden et al. (1996) in the medical education curricula. The purpose of the present study was to identify the characteristics and methods of teaching and learning task-based curriculum in nursing educat...
متن کامل